Home / Engineering Computing / Prepare for Augmented, Virtualized Product Development

Prepare for Augmented, Virtualized Product Development

In January 2016, investment advisory firm Goldman Sachs published a 30-page report titled “Virtual and Augmented Reality: Understanding the race for the next computing platform.” Goldman Sachs estimates the software market at $35 billion, and hardware at $45 billion, totaling $80 billion as its estimates of the addressable market for AR/VR by 2025. The same report predicts that, in software assumption by use case, video games will reach $11.6 billion (with 216 million users), and engineering $4.7 billion (with 3.2 million users).

Generalists and consumers tend to lump augmented reality and virtual reality together as a single trend, a unified phenomenon, but industry insiders treat them as two distinctly different technologies, for good reasons. Both have tremendous potential to facilitate collaboration, design review and product development in new ways, but the two address them differently, and must tackle different challenges.

Dell struck a partnership with AR gear developer Meta. Shown here is the Meta 2 development kit. Image courtesy of Meta.

Dell struck a partnership with AR gear developer Meta. Shown here is the Meta 2 development kit. Image courtesy of Meta.

Augmented Reality vs. Virtual Reality

An AR (augmented reality) application allows users to augment the physical world with a layer of digital data (text or images), for example, an AR app that displays digital cars as if they were parked inside a real showroom. The key to AR is interaction. An AR app with no way to rotate the virtual models, push virtual buttons, or activate digital menus offers very limited use in training, design review, or collaboration. Therefore, AR setups usually involve mechanisms that track hand, eye, and body movements to let you interact with the digital objects that aren’t really there.

A VR (virtual reality) application allows users to experience another world, object, or environment in a fully immersive environment, for example, a VR app that lets you see and hear the sights and sounds of ancient Pompeii. Once within the VR environment, you usually have little or no sense of the real world around you. This is why, at least in the current generation of VR programs, you may have to remain seated or stationary to avoid crashing into the walls and furniture around you; or you may have to rely on another person to monitor your movements while you’re navigating the VR world. The setup usually involves audiovisual content, but your ability to interact with the digital objects may be limited.

Accuracy is Key

Whereas the media and entertainment industry will likely embrace AR and VR with enthusiasm, professionals in engineering, design and manufacturing are expected to be much more cautious. In games and movies, AR and VR content serve primarily to stir up emotions; therefore, they can get away with approximation. In some cases, for a sense of drama, the visuals may be intentionally exaggerated. The Eiffel tower you see in a racing game set in Paris, for example, may not correspond to the real structure in proportions and dimensions.

In contrast, the visuals in AR and VR apps used for engineering purposes need to offer a higher degree of fidelity. To facilitate critical design decisions, the geometry of the new car model displayed in a VR app needs to faithfully represent how the vehicle will look when it’s built, down to the way the surfaces and materials react to natural and artificial lights. Similarly, to make reliable ergonomic assessments or effective training in AR, the steering wheels, dashboards, brakes, and other interactive command elements must accurately mimic the mechanical behaviors of the real objects they symbolize.

A driving simulator app powered by the Unreal Engine. Image courtesy of Epic Games.

A driving simulator app powered by the Unreal Engine. Image courtesy of Epic Games.

The Bridge from CAD

Because design engineers are at the forefront of developing dimensionally accurate product models, their role is crucial in generating AR- and VR-ready content. Industry heavyweights are starting to add tools to convert CAD data into AR/VR content. SOLIDWORKS, a division of Dassault Systemes, has added support for VR export in SOLIDWORKS Visualize Professional 2018, the MCAD software’s dedicated rendering and visualization program.

“Visualize 2018 allows you to create ‘spherical’ cameras, which render out a flattened-spherical image, changing how you design, develop and deliver your products. This image can then be viewed with any VR headset (from HTC Vive all the way to even a $15 Google Cardboard),” writes Brian Hillner, Product Portfolio Manager, SOLIDWORKS, in a blog post.

In mid-2017, Autodesk, SOLIDWORKS’ rival in CAD, began supporting VR content creation—specifically, for creating the two views required for VR viewing—in its rendering and animation package 3ds Max. The support came via 3ds Max Interactive, powered by the Autodesk Stingray engine.

In a company blog post, Bruno Landry, Product Designer and CG Artist, Autodesk, said, “We’re fast approaching the point where VR experiences will shift from ‘the impractical’ to ‘the expected’ from the perspective of clients.”

With a head start in media and entertainment, game engines have now become general-purpose augmented reality / virtual reality visualization engines. The two leading game engines are Unreal (from Epic Games) and Unity. Unreal offers Datasmith, a tool to bring CAD models into the Unreal engine for developing AR/VR content. Unity offers PiXYZ, a partner product that lets you bring CAD models into the Unity game engine.

Game engines rely heavily on professional GPUs, such as those from the NVIDIA Quadro and Tesla lines, to process and display real-time AR/VR content. GPU maker NVIDIA offers specific graphics processors marked as VR Ready, found in professional workstations, including the Dell Precision line. Learn more about Dell VR/AR Solutions

Meta uses hologram-like digital objects you can interactive with in the real world via augmented reality. Image courtesy of Meta.

Meta uses hologram-like digital objects you can interactive with in the real world via augmented reality. Image courtesy of Meta.

From Meshes to Holograms

Earlier this year, at the annual Consumer Electronics Show (CES) in Las Vegas, Dell announced it would become a reseller for Meta, an augmented reality headset developer. On Dell’s site, you can now purchase the Meta 2 development kit for $1,495. Dell also offers HTC Vive as a Pro VR ($1,399) and consumer ($499) system.

“The Meta 2 Augmented Reality Development Kit will make the Meta AR headset compatible with a number of Dell professional PCs, including Dell Precision workstations and Dell Canvas, as well as bundle the products together for purchase,” writes Dell in its press release about the Meta partnership.

Meta offers a hologram-like AR experience through its headset, powered by Unity engine. Meta also has a partnership with SOLIDWORKS to allow SOLIDWORKS CAD software users to publish Meta headset-viewable content.

“The way we see it, the Meta 2 Development Kit, and AR more broadly, will significantly enhance the CAD industry’s ability to help its customers deliver better products faster, and at significantly lower costs–a win-win-and-win for everyone involved,” said Christa Olson, Meta’s Head of Product Marketing, in a SOLIDWORKS blog post.

Realism and Interaction

Goldman Sachs sees “VR/AR technology disrupting both the computer-aided manufacturing (CAM) and computer-aided design (CAD) markets. In product manufacturing, VR/AR can enable engineers to test scenarios and designs before the products are made.” However, the firm also foresees challenges. It notes, “There could be a learning ramp to use the software and adjust engineering techniques.”

Highly parallel GPUs—a standard component of professional workstations and high performance computing (HPC) clusters—provide an easy way to pump out high-definition visuals in VR apps. The built-in kinematics and physics available in game engines offer a shortcut to creating realistic mechanical behaviors in AR (for example, how a crane moves in response to operator commands inside an AR app).

CAD users in the forefront of developing 3D models may play a crucial role in creating premium AR-VR content that’s ready to deploy for virtual trainings, client presentations, and design reviews.